Skip to content

Conversation

@puyuan1996
Copy link
Collaborator

@puyuan1996 puyuan1996 commented Sep 18, 2025

This pull request implements the core components of the ScaleZero paper by introducing a multi-task, balanced training pipeline for Atari and DeepMind Control (DMC) environments.

To enhance stability and performance in this new multi-task setting, several key improvements and bug fixes were made. We replaced BatchNorm with the more robust LayerNorm, corrected a critical bug that caused the kv_cache to be improperly overwritten, and fixed the state reset logic in _reset_eval() and _reset_collect() to ensure accurate evaluation.

Additionally, the PR introduces target-entropy control for better policy optimization, makes the number of MCTS simulations configurable for evaluation, and integrates relevant updates from the longrun PR to maintain code consistency.

本次 PR 核心是实现了 ScaleZero 论文的关键部分,为 Atari 和 DeepMind Control (DMC) 环境引入了一套多任务(multi-task)且均衡(balanced)的训练流水线

为确保在多任务场景下的稳定性和高性能,我们进行了一系列关键优化与修复:将不稳定的 BatchNorm 替换为更鲁棒的 LayerNorm;修复了导致状态错误的 kv_cache 重写 Bug;并修正了 _reset_eval() 和 _reset_collect() 中的状态重置逻辑,以保证评估的准确性。

此外,本次更新还引入了 target-entropy 控制机制以优化策略,并使评估阶段的 MCTS 模拟次数变为可配置项。同时,我们整合了 longrun PR 的相关变更,以保持代码库的统一和同步。

puyuan and others added 29 commits April 25, 2025 11:26
@puyuan1996 puyuan1996 added the research Research work in progress label Sep 18, 2025
@puyuan1996 puyuan1996 added enhancement New feature or request config New or improved configuration labels Sep 18, 2025
puyuan1996 and others added 22 commits September 28, 2025 19:53
…ty, fix _reset_collect/eval, add adaptive policy entropy control
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

config New or improved configuration enhancement New feature or request research Research work in progress

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants